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A B S T R A C T

Humans and other animals constantly evaluate their decisions in order to learn and behave adaptively.
Experimentally, such evaluation processes are accessed using metacognitive reports made after decisions, ty-
pically using verbally formulated confidence scales. When subjects report high confidence, it reflects a high
certainty of being correct, but a low confidence might signify either low certainty about the outcome, or a high
certainty of being incorrect. Hence, metacognitive reports might reflect not only different levels of decision
certainty, but also two certainty directions (certainty of being correct and certainty of being incorrect). It is
important to test if such bi-directional processing can be measured because, for decision-making under un-
certainty, information about being incorrect is as important as information about being correct for guidance of
subsequent behavior. We were able to capture implicit bi-directional certainty readouts by asking subjects to bet
money on their perceptual decision accuracy using a six-grade wager scale (post-decision wagering, PDW). To
isolate trial-specific aspects of metacognitive judgments, we used pre-decision wagering (wagering before the
perceptual decision) to subtract, from PDW trials, influences resulting from non-trial-specific assessment of
expected difficulty and psychological biases. This novel design allowed independent quantification of certainty
of being correct and certainty of being incorrect, showing that subjects were able to read out certainty in a bi-
directional manner. Certainty readouts about being incorrect were particularly associated with metacognitive
sensitivity exceeding perceptual sensitivity (i.e. meta-d′ > d′), suggesting that such enhanced metacognitive
efficiency is driven by information about incorrect decisions. Readouts of certainty in both directions increased
on easier trials, and both certainty directions were also associated with faster metacognitive reaction times,
indicating that certainty of being incorrect was not confounded with low certainty. Finally, both readouts in-
fluenced the amount of money subjects earned through PDW, suggesting that bi-directional readouts are im-
portant for planning future actions when feedback about previous decisions is unavailable.

1. Introduction

Humans and other animals are able to assess their own cognitive
processes (perception, memory and decisions) to flexibly adapt their
behavior (Fleming & Lau, 2014; Hampton, 2009; Kepecs & Mainen,
2012). This metacognitive assessment can be understood as readouts of
a varying certainty – probability distributions over contributing random
variables – associated with inherently uncertain sensory evidence and
cognitive processes (Kepecs, 2013; Ma & Jazayeri, 2014; Pouget,
Drugowitsch, & Kepecs, 2016) and is especially useful for planning post-
decisional actions under uncertainty (Fleming, Dolan, & Frith, 2012;
Kepecs & Mainen, 2012; Kiani, Corthell, & Shadlen, 2014).

Most previous work on assessing decision certainty utilized con-
fidence judgments (Fleming, Dolan, et al., 2012; Fleming, Huijgen, &
Dolan, 2012; Hebart, Schriever, Donner, & Haynes, 2014; Heereman,
Walter, & Heekeren, 2015; Persaud, McLeod, & Cowey, 2007), which
can be computationally defined as subjective probability of having done
a correct decision (Pouget et al., 2016). However, while confidence is a
form of certainty about being correct, these measures are not equivalent
(Fleming & Daw, 2017; Pouget et al., 2016). For example, a recent
study indicated that there might be a continuum in the knowledge one
has about having done something wrong and something right (Boldt &
Yeung, 2015) and, in this context, confidence might vary with certainty
levels but also with what we name ‘certainty directions’: one direction for
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the certainty of being correct, and the opposite direction for the certainty
of being incorrect. Hence, confidence ranges from 0 (high certainty of
being incorrect) to 1 (high certainty of being correct) with confidence
around 0.5 corresponding to intermediate levels of certainty of either
being correct or incorrect. Such bi-directional certainty might influence
future actions in a continuous bi-directional way. Imagine a man in a
hurry going to the supermarket and deciding whether to enter an aisle
to search for a specific product. If he is uncertain about his decision
(confidence around 0.5), he will probably slow down and search for the
product from a distance, staying close to other aisle options. This might
not be the best way to find the product, but it is the best way to avoid
spending the main resource (in this case, time) on this uncertain deci-
sion. If he is highly certain about the decision, the planning of a next
action might have two distinct outcomes depending on the certainty
direction. If he is certain about choosing the correct aisle (high cer-
tainty of being correct and therefore confidence close to one), he will
walk down this aisle to search for the product closely. On the other
hand, if he is certain he made an incorrect decision (high certainty of
being incorrect and, therefore, confidence close to zero), he will turn
around and walk to another aisle. Another compelling example of the
relationship between confidence and bidirectional certainty is the
“change of mind” phenomenon that has been linked to confidence de-
clining below 0.5 during the execution of the decision (Resulaj, Kiani,
Wolpert, & Shadlen, 2009; Van den Berg et al., 2016).

Although as exemplified, both certainty directions might result from
the same decisional context, it was not until recently that they were
studied concomitantly (Boldt & Yeung, 2015; Fleming & Daw, 2017; Yu,
Pleskac, & Zeigenfuse, 2015). Prior to this, the assessment of informa-
tion associated with erroneous decisions was extensively studied in the

context of the error monitoring and detection, typically with binary re-
ports (e.g. Charles, Van Opstal, Marti, & Dehaene, 2013; Rabbitt, 1966;
Rabbitt & Rodgers, 1977; Yeung & Summerfield, 2012), whereas pre-
vious confidence evaluation studies considered mainly the graded cer-
tainty of being correct (e.g. Fleming, Dolan, et al., 2012; Fleming,
Huijgen, et al., 2012; Hebart et al., 2014; Heereman et al., 2015; Kepecs
& Mainen, 2012; Kiani & Shadlen, 2009). These studies provided im-
portant knowledge about the metacognition of perceptual, memory-
based and value-based decision-making (e.g. Fleming, Dolan, et al.,
2012; Hampton, 2001; Kiani & Shadlen, 2009; Monosov & Hikosaka,
2013).

Nonetheless, even the studies that addressed both certainty direc-
tions did not dissociate the relative influence of certainty in correct or
incorrect decisions on confidence reports and metacognitive ability.
Moreover, although research on different animal species implicated
non-language-related cognitive processes in a computational frame-
work of metacognition (Kepecs & Mainen, 2012; Kiani & Shadlen, 2009;
Kepecs, Uchida, Zariwala, & Mainen, 2008; Meyniel, Sigman, & Mainen,
2015; Pouget et al., 2016), the ability to use certainty of being correct
and certainty of being incorrect implicitly, without verbal confidence
scale formulations, has not been measured in the same experiment.

The aim of this study was to capture probabilistic readouts that
could provide separate quantifiable measures of each certainty direc-
tion without relying on explicit verbal formulations, and to test the
hypothesis that implicit assessments of both certainty of being correct
and certainty of being incorrect result in more adaptive post-decisional
behaviors. To this end, we designed a novel experiment in which trials
with post-decision wagering (PDW; Persaud et al., 2007) were inter-
leaved with trials in which subjects were instructed to bet money before
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Fig. 1. (A) Task design. The appearance of a red spot (for eye fixation) and of a gray framed-square (indicating buttons status) in the screen center signaled the trial start (pre-rest). The
brightening of the red spot and the onset of the gray filled square indicated that subjects correctly adopted the rest position. The sample was then presented in the center of the screen for
1 s. During PDW trials, subjects first performed the control task. The letters H (‘high’) and L (‘low’) were presented on each side of the screen. The presentation sides varied randomly. A
blue square appeared above a specific “wager” and subjects had first to select high or low and then use the same button repeatedly to select the instructed “wager” option. The selection
always moved from center-out. Overall, subjects had 3 s to select the instructed “wager”. Then, subjects performed the match-to-sample task by choosing the image they believed was the
match. Next, subjects performed the actual PDW wagering task, which was similar to the control task except that, after freely choosing high or low wager category, subjects could move
the yellow square that appeared above one of the three specific wagers to select a desired option. PreDW trials were similar to PDW trials, with the difference that the wagering task and
the control task order in the trial timeline was reversed. (B) Five difficulty levels were created by different orientation contrasts between the match and the non-match (linearly from 4.5°
to 22.5°). (C) Proportion of trials in the easy family (green), medium family (blue) and hard family (red) from each difficulty level (1–5). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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the perceptual decisions (Pre-decision wagering, PreDW). As briefly
described here and in detail in the Methods (Section 2.6), we compared
PDW and PreDW in order to isolate the trial-specific decisional in-
formation used in readouts of certainty of being correct and certainty of
being incorrect, and to quantify these readouts.

To tease apart these trial-specific readouts, we relied on the design
in which in both PreDW and PDW trials subjects could use information
about expected difficulty presented at the beginning of each trial to
choose their wagers (Fig. 1). Moreover, subjects’ psychological biases
were expected to have similar influence on their wagering behavior in
both PreDW and PDW. For example, loss-averse subjects were expected
to wager lower than non-loss-averse subjects.

On the other hand, only when subjects wagered after the perceptual
decision (PDW trials) they could add trial performance-specific in-
formation – such as the certainty level and the certainty direction as-
sociated with the trial decision – to the non-trial-specific information in
order to wager more adaptively. Hence, we subtracted certainty-related
PreDW measures (based on non-trial-specific information) from cer-
tainty-related PDWmeasures (based on both trial-specific and non-trial-
specific information) to isolate the PDW trial-specific information used
during certainty readouts (Fig. 2). Thus, the use of PreDW baseline,
which accounted for non-trial-specific biases and expectations, was
instrumental for isolating the readouts of certainty during PWD. Using
this approach, we calculated certainty of being correct by comparing
PreDW and PDW measures associated with correct perceptual decisions.
And, separately, we calculated certainty of being incorrect by com-
paring PreDW and PDW measures associated with incorrect perceptual
decisions.

We found that subjects indeed wagered accordingly with non-trial-
specific information during PreDW trials, whereas they used trial-spe-
cific information to bet money more efficiently during PDW.
Importantly, the trial-specific information was used to read out both

certainty directions. To our knowledge, this is the first measurement of
the bi-directional assessment of metacognitive information (readouts of
certainty of being correct and certainty of being incorrect) based on
implicit reports and using the same paradigm. Our measurements
showed that humans are able to assess whether they have made correct
or incorrect decisions and use this information to behave adaptively
without the need of verbal formulations. Moreover, although the
readouts of certainty of being correct influenced subjects’ earnings, it
was the ability to read out certainty of being incorrect that affected the
amount of money earned during PDW most. These results demonstrate
the importance of readouts of certainty of being incorrect in confidence
judgments and suggest their adaptive value for future actions.

2. Methods

2.1. Subjects

Eighteen subjects (6 males; mean age 25.7 years) were recruited via
an online platform of the University of Goettingen. All subjects had
normal or corrected-to-normal vision. Data from one subject was dis-
carded because of insufficient number of trials in some of the condi-
tions. Subjects were paid according to their performance (please see
below). The experimental procedures were approved by the local ethics
committee.

2.2. Experimental setup

Subjects sat in front of an LED screen (1600×1200 resolution) at
51 cm viewing distance and responded manually using two capacitive
proximity sensors (buttons) connected to the computer via parallel port.
Subjects positioned their head over an adjustable chin rest and had
their head fixed with an adjustable strap for better stabilization. Gaze
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influenced both by the readout of certainty of being correct and by the readout of certainty of being incorrect. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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position was acquired with a 60 Hz miniature infrared eye tracker
camera and ViewPoint 2.8.6.21 software (Arrington Research). The task
was controlled via MATLAB (Mathworks Inc) using the Psychophysics
toolbox (http://psychtoolbox.org/). Subjects performed practice trials
until they became familiar with the experimental setup.

2.3. Delayed match-to-sample task

Subjects completed 360 trials of a visual delayed match-to-sample
(DMTS) task in which they had to find, between two options, the match
for a preceding sample, which consisted of one gray circle of 1.5° of
visual angle radius with an oblique black bar crossing its center (Fig. 1).
Ten different sample options were generated by varying the bar or-
ientation in counterclockwise rotation from the horizontal plane (from
18° to 58.5°). One of these ten samples was presented pseudo-randomly
at the beginning of each trial in the center of the screen. During match-
to-sample presentation, one sample-like image was presented 9° to the
right and another one 9° to the left of the center of the screen (eye
fixation spot). One of them had a bar in the same orientation as the
sample (match) and the other one had a bar in a different orientation
(non-match). Subjects responded by using the button next to the hand
positioned on the side of the screen where the image was selected as the
match (Fig. 1A). Five difficulty levels were created by different or-
ientation contrasts between the match and the non-match (from 4.5° to
22.5°; Fig. 1B). Trials with different difficulty levels were grouped into
three families. The overall level of difficulty of each family was de-
termined by the different proportions of trials of each difficulty level.
The sample color – green, blue or red – cued these families: easy,
medium or hard, respectively (Fig. 1C).

Subjects were informed before the experiment that colors were re-
lated to different levels of difficulty, but they were not told about the
link between specific colors and difficulty of each family.

2.4. Pre-decision wagering, post-decision wagering and the control task

The metacognitive decision was a wagering task in which subjects were
asked to bet money on the correctness of their perceptual decision. They
won the wagered money for correct DMTS decisions and lost it for incorrect
DMTS decisions. In half of the 360 trials, subjects wagered after the DMTS
decision (Post-decision wagering, PDW) and in the other half of the trials
subjects wagered before the DMTS decision (Pre-decision wagering,
PreDW). PreDW and PDW trials were pseudo-randomly interleaved. PreDW
was used as baseline condition in further analyses (see Section 2.6). During
wagering, subjects made the metacognitive decisions by selecting first to
wager high (wager categories 4, 5 and 6) or low (wager categories 1, 2 and
3), and afterwards by selecting a specific wager category among low or
high options. Subjects had to select a specific wager within 3 s by using the
button of the hand positioned in the same side of the corresponding se-
lected option. This two-stage wager selection procedure was used so that
we could assess reaction times (see Section 3.6) despite the graded response
scale used for metacognitive decisions: the first stage binary response was
intended to preclude additional influences on the reaction times due to
variability in the urgency to select a specific wagering option along the
scale.

In addition to the wagering, we used a control task, in which sub-
jects had to select a visually-cued response option. This task worked as
an “instructed” wagering (Fig. 1) and did not influence subjects’ earn-
ings. It aimed to equalize, across PDW and PreDW trials, the cognitive
effort due to intervening distractions (visual stimulation, object selec-
tion, and corresponding time interval). On PDW trials, subjects per-
formed the control task before the DMTS decision, at the same period
they were wagering on PreDW trials, and vice versa for PreDW trials.

Subjects started the experiment with 10 Euros and could earn up to
30 Euros according to their performance. They wagered on the cor-
rectness of every DMTS decision using the following pay-off matrix,
which was explained to them before the experiment (Table 1):

As can be seen from the pay-off matrix, if subjects wagered low,
they were rewarded and punished in the same way for correct and in-
correct perceptual decisions, respectively. But when they wagered high,
their incorrect perceptual decisions were punished with 3 cents more
than they would have earned for correct DMTS decisions. This pay-off
matrix was designed during pilot experiments in which subjects re-
ported that they knew they were performing generally above the
chance level (50%) and thus could earn money by simply wagering high
all the time. To counteract this strategy, we encouraged subjects to
evaluate every perceptual decision by punishing high wagers associated
to incorrect DMTS decisions more than low wagers.

2.5. Trial timeline

Eye and hand movements were controlled throughout the trial. Each
trial started with the appearance of a red sport and a gray framed-
square in the center of the screen. Subjects were positioned in the rest
position when they fixated the gaze inside the eye fixation window (3°
visual angle radius around the red spot) and, concomitantly, positioned
the right and left thumbs over two separate buttons. After a variable
delay in the rest position (0.5–1 s), the sample was presented in the
center of the screen for 1 s. After sample presentation, subjects had to
maintain the rest position for another 1 s before the control task (for
PDW trials) or the wagering task (for PreDW trials). Another period of
1 s separated control/PreDW from the match-to-sample task. Subjects
had up to 1.5 s to select the image they believed was the match. After
the perceptual decision report and another interval of 1 s, subjects
performed the wagering task (PDW trials) or the control task (PreDW
trials, Fig. 1A).

There was no trial-by-trial feedback about the correctness of match
selection. One feedback about the overall earnings collected so far was
presented during a break that occurred after 180 complete trials, and
the final earned value was presented after 360 complete trials. Trials in
which subjects broke eye or hand fixation requirements, or were too
slow to respond in one of task response periods, were aborted and re-
peated at a later time.

2.6. Slope-based measurements for certainty of being correct and incorrect:
importance of PreDW baseline

We developed a new approach (named slope-based measurements) to
calculate separate readouts of certainty of being correct and certainty of
being incorrect. These measurements are based on linear fits derived
from the proportions of correct or incorrect perceptual decisions that
each of the six wagers was assigned to (Fig. 2). These proportions were
calculated by dividing the number of correct trials each wager was
assigned to by the total number of correct trials (wager-specific pro-
portion of correct trials) and, separately, dividing the number of in-
correct trials each wager was assigned to by the total number of in-
correct trials (wager-specific proportion of incorrect trials). For
example, if a subject assigned the lowest wager to 15 of the 30 incorrect
trials, this wager’s proportion of incorrect trials is 50%. If the second
lowest wager was assigned to 9 of the 30 incorrect trials, its proportion
of incorrect trials is 30%, so on and so forth. Next, we fitted a linear
regression to the six wager-specific proportions of correct trials and
another linear regression to the six wager-specific proportions of

Table 1
Wagering payoff matrix.

DMTS
decision

Low wagers High wagers

Correct 2 cents 5 cents 8 cents 11 cents 14 cents 17 cents
Incorrect −2 cents −5 cents −8 cents −14 cents −17 cents −20 cents
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incorrect trials. The slopes of those fits were named “slope-correct” and
“slope-incorrect”, respectively, and were associated with the ability to
read out each certainty direction. Hence, subjects whose proportions of
correct trials increased towards the highest wager would demonstrate,
through this positive slope-correct, the ability to read out certainty of
being correct (see Fig. 2B).

However, a problem of using this approach for PDW in isolation is
that, in addition to trial-specific information, those wager-specific
proportions might also be influenced by unspecific factors such as the
general task difficulty and psychological biases (e.g. loss aversion or
overconfidence). For example, subjects with higher loss aversion and/
or facing harder perceptual difficulty might choose low wagers more
often than high wagers, independently of their performance in the
preceding decision. In this case, the resulting slope would not be zero,
but negative, even without any assessment of trial-specific perfor-
mance. In order to disentangle the influences of such unspecific factors
from the assessment of trial-specific performance, we used the PreDW
task as the baseline for the slope-based measurements. During PreDW,
subjects could only access their average performance in each of the
three difficulty families, which were indicated by the sample color
(green, blue or red for the three families: easy, medium or hard, re-
spectively, Fig. 1C). Importantly, subjects were not able to predict, at
the moment they were wagering, their actual trial performance. Con-
sequently, subjects should end up assigning the wagers randomly to
correct and incorrect trials, generating similar PreDW slope-correct and
PreDW slope-incorrect values (Fig. 2A). This similarity is a requirement
for the baseline condition, and it is present in our results (see Section
3.2 for further information).

During PDW, on the other hand, subjects might have access to their
trial-specific DMTS performance. The better they assess this informa-
tion (i.e. metacognitive ability), the more PDW slope-correct and PDW
slope-incorrect become distinct from each other and from baseline
PreDW slopes. This happens when subjects are able to assign high
wagers more often to correct trials and low wagers more often to in-
correct trials, relative to the PreDW baseline. The difference between
PDW slope-correct (Postcor) and PreDW slope-correct (Precor) char-
acterizes the readout of certainty of being correct. When subjects are
able to detect correct trials, Postcor is larger than Precor (Fig. 2B). The
same calculation is done independently for incorrect DMTS decisions,
with inverted assumption: when subjects are able to detect incorrect
perceptual decisions, Postinc is smaller than Preinc (Fig. 2C).

Subjects’ metacognitive ability (the ability in detecting correct and/
or incorrect DMTS decisions on a trial-by-trial basis) will be reflected in
the sum of their abilities to read out certainty of being correct and
certainty of being incorrect. The metacognitive ability reaches highest
levels when subjects are able to read out both certainty directions
(Fig. 2D).

It is important to emphasize that, although we use words “identify”
and “detect”, we believe that reading out certainty is a probabilistic
process. Therefore the readouts reflect the detection of correct and in-
correct perceptual decisions in a probabilistic manner (Pouget et al.,
2016).

2.7. D-prime (d′) and meta-d′ calculation, and relationship to slope-based
metacognitive ability

In Section 3.5 of Results we compare the slope-based metacognitive
ability with an established measure of metacognitive ability, meta-d′
(Maniscalco & Lau, 2012). Meta-d′ was calculated using the parameters
of the Signal Detection Theory model as applied in Maniscalco and Lau
(2012) code available online (http://www.columbia.edu/~bsm2105/
type2sdt/archive/index.html). This method estimates the value of
perceptual (Type 1) sensitivity (d′) that would have been required to
produce the observed metacognitive hits and false alarms (Type 2
sensitivity). Since the wager-specific proportions of correct and in-
correct trials, or in other words the accuracy-conditional probabilities

of using each wager, are also used for the calculation of the standard
Type 2 receiver operating characteristics, ROC, the same data go into
the calculation of meta-d′ and into the calculation of the slope-based
PDW-only estimates. Therefore, these two measures are closely related
(in our data they present a correlation of R= 0.9, p < 0.0001; im-
perfect correlation might be due to meta-d′ being dependent on the
Type 1 criterion, and because it uses a probit regression while the slope-
based analysis uses linear regression).

Nevertheless, the main difference between the meta-d′ and the
slope-based metacognitive ability is that the latter is predicated upon
the comparison between PDW vs. PreDW and allows (as our results
suggest) distinguishing between the two certainty directions. Meta-d′,
on the other hand, is calculated using only PDW but cannot distinguish
between the two certainty directions. The major advantage of meta-d′ is
that it is calculated on the same scale as d′ and, therefore, these two
measures can be directly compared. The metacognitive efficiency, de-
fined as meta-d′ divided by d′ (meta-d′/d′), reflects the comparison
between how well subjects used the information available for meta-
cognitive decisions and for perceptual decisions (Maniscalco & Lau,
2012).

Based on the d′ and meta-d′ estimates, we created two groups of
metacognitive efficiency by dividing the subjects into those who per-
formed better on metacognitive PDW decisions compared to perceptual
DMTS decisions (high metacognitive efficiency group, meta-d′/d′ > 1)
and those who performed better in the DMTS task than during PDW
(low metacognitive efficiency group, meta-d′/d′ < 1). Since values of
meta-d′ > d′ would not be predicted if the same evidence is used for
the Type 1 and the following Type 2 decisions (Maniscalco & Lau,
2012), we compared these two groups in order to investigate if a higher
metacognitive efficiency could be associated with access to additional
information that was not available for the Type 1 decision (Fleming &
Daw, 2017; Yu et al., 2015).

2.8. Statistical analysis

We performed one-way, two-way and mixed-effects ANOVAs, linear
correlations or t-tests using MATLAB (Mathworks Inc), as specified in
the Results. R (The R Foundation) was used to perform multiple re-
gression and linear mixed-effects regression models (R package nlme;
Pinheiro, Bates, DebRoy, & Sarkar, 2007). The mixed-effects ANOVAs
and the linear mixed-effects regression models allowed us to include all
data (unbalanced design) and still utilize repeated measures when ap-
propriate. When required, post hoc tests were performed and Bonfer-
roni corrected for multiple comparisons.

3. Results

17 human subjects were asked to carry out a visual perceptual de-
cision of varying difficulty (delayed match-to-sample, DMTS task) and a
wagering task either before (pre-decision wagering, PreDW) or after
(post-decision wagering, PDW) the perceptual decisions. Trial types
(PreDW and PDW) and difficulty levels were pseudo-randomly inter-
leaved.

3.1. Subjects performed similarly in the DMTS task during PDW or PreDW
trials, and wagered according to the information available in each trial type

We performed a two-way ANOVA for repeated measures to assess if
perceptual performance varied between trial types (PreDW and PDW,
factor 1) and among difficulty levels (factor 2). As expected, subjects
performed better in the DMTS task on trials of lower difficulty
(mean ± SE for difficulty levels 1–5: 86.7 ± 3.3 81.4 ± 2.2
75.0 ± 3.0 67.8 ± 2.4 49.7 ± 2.7%; F4,64= 51.439, p < 0.0001).
There was no difference in average DMTS performance between PreDW
and PDW trial types (F1,16= 2.104, p=0.17) and no interaction effect
(F4,64= 0.970, p=0.43), showing that subjects performed similarly in
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PreDW and PDW trial types across the five difficulty levels.
We next tested, with separate linear mixed-effects regression models

for PreDW and PDW trials, if there were differences in wagering be-
havior among the five difficulty levels or among the three families. As
described in Methods, families had different proportions of trials of each
difficulty level (Fig. 1C), and were signaled to the subjects by the color
of the sample. As expected, during PreDW trials subjects wagered ac-
cording to the families (p < 0.001 for all pair-wise comparisons be-
tween families), and not according to the actual trial difficulty level,
which was unknown to the subjects at the moment they were wagering
(p > 0.05 for all difficulty levels; Fig. 3A). In PDW trials, although
there was a significant difference between easy and hard families
(p < 0.05), this difference was driven by the actual difficulty levels
(p < 0.05 for the comparisons between all difficulty levels, except
between difficulty levels 1 and 2; Fig. 3B).

These results show that during PreDW subjects understood the dif-
ferences among the families and wagered according to them. The re-
sults also indicate that during PDW trials subjects did not rely solely on
the sample color (which signaled the average difficulty of each family).
Instead, they also used trial-specific information accessed through the
direct comparison between the two match options (trial-specific diffi-
culty level).

With exception of d′ and meta-d′ calculations, the following results
are based on measurements averaged across the five difficulty levels. In
these measurements, we first averaged the results of different difficulty

levels for one subject, and then we calculated averages across subjects.
In Section 3.7 we present data on separate difficulty levels to establish
their relationship with subjects’ metacognitive readouts.

3.2. Slope-based measurements reveal that on average subjects read out
both certainty directions

As described in Section 2.6, slope-correct and slope-incorrect are
independent measures used to quantify readouts of certainty of being
correct and certainty of being incorrect, respectively. These slopes are
based on linear regressions fitted to the wager-specific proportions of
correct and incorrect trials (Fig. 2). To isolate trial-specific readouts, we
created a baseline condition derived from PreDW trials. PreDW pro-
vided us with general wagering trends that subjects might have de-
veloped based on non-trial-specific information (such as expected dif-
ficulty and psychological biases) which, when subtracted from PDW
slopes, should provide slope differences resulting only from trial-spe-
cific information.

Since PreDW is based solely on non-trial-specific information, sub-
jects should assign wagers randomly to the following correct and in-
correct perceptual decisions and, in contrast to PDW, PreDW slope-
correct should be similar to PreDW slope-incorrect (Fig. 4A). We used
two-way ANOVA for repeated measures to test if slope-correct is dif-
ferent from slope-incorrect (factor 1) depending on the trial type (PDW
or PreDW, factor 2). Independently of the other factor, PreDW slopes

Difficulty level

W
ag

er
 (E

ur
os

)

0.04

0.06

0.08

0.10

0.12

0.14

0.16
PDWB

51
Difficulty level

W
ag

er
 (E

ur
os

)

0.04

0.06

0.08

0.10

0.12

0.14

0.16
PreDW

51 2 3 42 3 4

Easy family
Medium family
Hard family

A

hardeasy hardeasy

Easy family
Medium family
Hard family

Fig. 3. Means and standard errors of PreDW (A) or PDW (B) wagers for each perceptual difficulty level within each perceptual difficulty family: easy (green), medium (blue) and hard
(red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

C

P
er

ce
nt

 o
f t

ria
ls

 (%
)

1 2 3 4 5 6
Wager category

15

-15

-10

-5

0

5

10
correct trials
incorrect trials

Bi-directional certainty 
(PDW slopes minus PreDW slopes)

P
er

ce
nt

 o
f t

ria
ls

 (%
)

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6

PDW slopes

Wager category

B

correct trials
incorrect trials

PreDW slopes

P
er

ce
nt

 o
f t

ria
ls

 (%
)

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6
Wager category

A

correct trials
incorrect trials

Fig. 4. Means and standard errors of linear fits for correct trials (blue lines and shaded bands) and incorrect trials (red lines and shaded bands) for (A) PreDW (baseline) and (B) PDW,
fitted to the data: means and standard errors of wager-specific proportion of correct trials (blue curves) and incorrect trials (red curves). (C) Mean and standard error of PDW slope-correct
minus PreDW slope-correct (blue line and shaded band) and of PDW slope-incorrect minus PreDW slope-incorrect (red line and shaded band), for all subjects. See Supplementary Fig. S1
for PreDW and PDW data plotted separately for each difficulty level. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

C.M. Moreira et al. Cognition 176 (2018) 40–52

45



did not differ from PDW slopes (F1,16= 0.007, p=0.93) but slope-
correct differed from slope-incorrect (F1,16= 64.039, p < 0.0001).
The interaction effect revealed that slope-correct and slope-incorrect
were different depending on the trial type (F1,16= 42.493,
p < 0.0001). Importantly, the post hoc test showed that this difference
occurred during PDW trials (t16= 9.433, p < 0.01; Fig. 4B), but not
during PreDW trials (t16= 2.204, p > 0.05, Fig. 4A), suggesting that
PreDW is a reliable baseline.

After verifying that we have a valid baseline, we tested if subjects
were able to independently read out certainty of being correct and
certainty of being incorrect, by calculating the difference between
PreDW and PDW slopes separately for correct and incorrect decisions.
PDW slope-correct was significantly higher than PreDW slope-correct
(t16= 3.6115, p < 0.01), indicating that on average subjects read out
certainty of being correct and used this information to wager more
adaptively after the decisions. Similarly, PDW slope-incorrect was sig-
nificantly more negative than PreDW slope-incorrect (t16=−3.7327,
p < 0.01). These slope-based measures indicated that on average
subjects were able to use trial-specific information to avoid wagering
high after incorrect perceptual decisions, while wagering high after
correct decisions (Fig. 4C).

3.3. High and low metacognitive efficiency groups had similar performance
in perceptual decisions but differed in metacognitive ability

In the present experiment, d′ (Type 1 sensitivity) reflects how well
subjects identified the match during DMTS decisions; and meta-d′ (Type
2 sensitivity) reflects how well subjects used wagers to identify correct
and incorrect DMTS decisions (Galvin, Podd, Drga, & Whitmore, 2003).
We used Maniscalco and Lau (2012) method to measure d′ and meta-d′
on the same scale and to compare them directly (Section 2.7). We
plotted meta-d′ as a function of d′, and distinguished between two
groups of subjects: a group of 11 subjects with meta-d′ > d′, falling
above the diagonal (high metacognitive efficiency group), and a group
of 6 subjects with meta-d′ < d′, falling below the diagonal (low me-
tacognitive efficiency group; Fig. 5A).

Since we used a post hoc grouping approach, it was important to
check if the measurements (d′ and meta-d′) we used to create those
groups varied significantly in the intergroup comparison. We applied a
mixed-effect ANOVA with two factors: type of measurement (d′ and
meta-d′, within-subjects) and group (meta-d′ > d′ and meta-d′ < d′,
between-subjects). Meta-d′ was not different from d′ across the entire
sample (F1,15= 1.118, p=0.31), and there was no group difference
averaging the two measurements (F1,15= 4.256, p=0.06). However,
the interaction effect was significant (F1,15= 24.995, p < 0.001). Post-

hoc tests revealed that the two groups had the same d′ (t15= 0.051,
p=0.96), but the group of subjects with high metacognitive efficiency
had higher meta-d′ than the group of subjects with low metacognitive
efficiency (t15= 3.198, p < 0.05; Fig. 5B). This result allowed us to
compare the two groups knowing that intergroup differences were not
associated with differences in subjects’ performance in the DMTS task
(Type 1 sensitivity), but only with their performance during PDW (Type
2 sensitivity).

3.4. Only the group of subjects with higher metacognitive efficiency read out
certainty of being incorrect

To test if the differences between PDW and PreDW slopes which we
found for all subjects together (Section 3.2) were present in both low
and high metacognitive efficiency groups, we performed two mixed-
effect ANOVAs (PDW and PreDW slopes, within-subjects factor 1;
groups, between-subjects factor 2), for slope-correct and slope-incorrect
measures. The first ANOVA revealed that slope-correct was higher for
PDW compared to PreDW trials (F1,15= 10.218, p < 0.01) without
group difference (F1,15= 0.017, p= 0.90; meta-d′ > d′: t10= 2.791,
p < 0.02; meta-d′ < d′: t4= 2.892, p < 0.05) or interaction between
the factors (F1,15= 0.433, p=0.52; Fig. 6A), indicating that group
differences in metacognitive efficiency were not driven by the readouts
about the certainty of being correct. The second ANOVA revealed that
slope-incorrect was also different between PDW and PreDW
(F1,15= 11.070, p < 0.01) without group difference (F1,15= 1.825,
p=0.20). However, the interaction effect was significant
(F1,15= 4.888, P < 0.05) and the post hoc test revealed that PDW
slope-incorrect was different from PreDW slope-incorrect only for the
high metacognitive efficiency group (t10=−4.742; p < 0.01;
Fig. 6A). Fig. 6B and C further illustrate the difference between PWD
and PreDW slopes for the two groups. Altogether, these results indicate
that the difference between the groups in regard to the slope-based
metacognitive ability, defined as the sum of readouts of certainties of
being correct and incorrect (metacognitive ability 7 ± 1 for the meta-
d′ > d′ group and 3 ± 1 for the meta-d′ > d′ group, non-paired t-test,
t15= 2.748, p < 0.05), was due to the ability of subjects with high
metacognitive efficiency to read out certainty of being incorrect.

The contribution of reading out certainty of being incorrect to me-
tacognitive ability was further supported by the fact that several sub-
jects from the high metacognitive efficiency group had perceptual
performance below the chance level (50%) in the lowest wager category
(Fig. 7A). To demonstrate this, we used mixed-effects ANOVA to test if
the perceptual performance varied across the wager categories (within-
subjects factor 1) and if this variation was similar between the high and
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low metacognitive efficiency groups (between-subjects factor 2). As
expected, subjects performed better on trials in which they selected
higher wagers (F4,60= 23.837, p < 0.0001). Importantly, the inter-
action effect showed that while the groups had the same general per-
ceptual performance (F1,15= 0.107, p= 0.75), wager-specific percep-
tual performances were different between them (F4,60= 7.077,
p < 0.0001; Fig. 7A). While the perceptual performance of the meta-
d′ < d′ group varied from 58.7% in the lowest wager to 82.1% in the
highest wager, the meta-d′ > d′ group had a range varying from below
chance performance in the lowest wager (43.1%) to 94.7% in the
highest wager. The perceptual performance in the wager category 1 for
the meta-d′ > d′ group was significantly below the chance level
(t10=−2.569, p < 0.05).

To further investigate this result, we calculated the correlation be-
tween perceptual performance in the wager category 1 and metacog-
nitive efficiency across subjects (Fig. 7B). We found a strong negative
correlation (R=−0.8, p < 0.0001) between these two factors. This
result is not surprising since meta-d′ is calculated based on accuracy-
conditional probabilities of using each wager level (see Section 2.7).
However meta-d′ is influenced by all wager categories and it is note-
worthy that the performance for wager category 1 is most correlated

with meta-d′/d′ compared to performance in the other categories
(second highest correlation was R=−0.56, data not shown), in-
dicating a specific relevance of certainty about being incorrect for
metacognitive efficiency. Most importantly, while several subjects with
high metacognitive efficiency presented perceptual performance below
the chance level for this wager category, none of the subjects with low
metacognitive efficiency showed it. We interpret this result as a com-
pelling demonstration that the meta-d′ > d′ subjects were able to read
out certainty of being incorrect to detect incorrect perceptual decisions
and to assign the lowest wager to them.

3.5. Slope-based metacognitive ability is compatible with meta-d′

Since the slope-based measure that relies on the comparison of
PreDW and PDW is an alternative approach we developed to assess
separate contributions of certainty in being incorrect or correct to
metacognitive ability, we compared it to meta-d′, an established and
widely used measure. It is important to emphasize that the meta-d′ and
the PDW-only slope-based calculations are based on the same data (see
Section 2.7), therefore we expect a good match between the slope-based
and meta-d′ approaches, provided that the other component of the slope-
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based metacognitive ability, PreDW slopes, is indeed serving as a reli-
able baseline.

A strong positive correlation between the slope-based metacognitive
ability and meta-d′ (R=0.88, p < 0.0001) indicates that the slope-
based approach can be considered a valid measure of metacognitive
ability, with the advantage of allowing independent quantification of
certainty of being correct and certainty of being incorrect readouts
(Fig. 8).

The separate correlation between the slope-based readout of being
correct and the meta-d′ was not significant (R= 0.42, p= 0.089),
while the correlation between the slope-based readout of being in-
correct and the meta-d′ was significant (R=0.57, p= 0.016). In line
with these findings, a multiple linear regression between meta-d′ and
separate readouts of certainty in both directions showed a stronger
influence of certainty of being incorrect on the meta-d′ (β=0.260,
t14= 6.495, p < 0.001), as compared to certainty of being correct
(β=0.211, t14= 5.657, p < 0.001).

3.6. Wager-specific metacognitive reaction times indicate increasing
certainty in both directions of the wager scale

In the present experiment, each trial had two manual response
periods. Perceptual reaction times (‘RT1’) reflect the time subjects took
to report the DMTS decision. On average, subjects had faster RT1 when
reporting easier DMTS decisions (F4,60= 11.553, p < 0.0001).
Metacognitive reaction times (‘RT2’) reflect the time subjects took to
choose between high or low wagers. Perceptual and metacognitive re-
action times were also calculated separately for each wager (wager-
specific RT1 and wager-specific RT2) to test the influence of perceptual
reaction times on subsequent wagering behavior, as well as the re-
lationship between certainty and metacognitive reaction times.

The mixed-effect ANOVA on perceptual RT1s (within-subjects factor
1: wagers, between-subjects factor 2: metacognitive efficiency group)
showed that RT1s were associated with the subsequent selection of the
wager (F5,75= 21.140, p < 0.0001). The association was unidirec-
tional, with RT1s decreasing when followed by high wagers. The in-
teraction effect showed that subjects from the high metacognitive ef-
ficiency group responded faster during perceptual decisions preceding
some of the wagers (F5,75= 4.004, p < 0.01; Fig. 9A). There was no
main effect of the group, perhaps because the low efficiency group
included only 6 subjects (F1,15= 3.223, p=0.09).

The mixed-effect ANOVA on metacognitive RT2s (within-subject
factor 1: wagers, between-subjects factor 2: metacognitive efficiency
group) showed that mean wager-specific RT2s also differed among
wagers (F5,75= 10.087, p < 0.0001). Across all subjects, RT2s were
shorter in the wager categories 1 and 6 than in the middle wagers 3 and
4 (pair 1 and 3: t16=−3.514, p < 0.05; pair 4 and 6: t16= 2.546,
p < 0.05; Bonferroni-corrected), generating an inverted U-shape
function of wager-specific RT2 (Fig. 9B). Since faster reaction times are
associated with increased certainty (Kiani et al., 2014), this result fur-
ther supports our hypothesis that certainty increases in both directions
of the wager scale. We associate fast metacognitive reaction times in the
wager category 1 with increased certainty of being incorrect, and fast
metacognitive reaction times in the wager category 6 with increased
certainty of being correct. But although the inverted U-shape seemed
more pronounced in the high metacognitive efficiency group, the group
comparison with mixed-effect ANOVA showed no significant differ-
ences between the groups (F1,15= 0.397, p= 0.54) or interaction be-
tween the factors (F5,75= 1.487, p=0.20; Fig. 9B). The group-specific
pairwise comparison of wagers 1 and 3, however, revealed a significant
RT2 difference only in the high metacognitive efficiency group (meta-
d′ > d′ group: t10=−4.495, p < 0.01; meta-d′ < d′ group:
t5=−1.000, p > 0.05) while the difference between RT2 for wagers 6
and 4 was significant in both groups (meta-d′ > d′ group: t10= 7.625,
p < 0.001; meta-d′ < d′ group: t5= 2.685, p < 0.05). This result
supports our interpretation of a link between bi-directional certainty
and metacognitive reaction times.

3.7. Readouts of certainty of being correct and certainty of being incorrect
increased with perceptual signal strength

For the analyses in preceding sections, we combined all five diffi-
culty levels. Here, we performed two independent one-way ANOVAs for
repeated measures to test for differences in certainty readouts across
the difficulty levels. The first ANOVA showed that readouts of certainty
of being correct decreased with difficulty level (F4,64= 11.715,
p < 0.0001). The pair-wise post hoc test revealed that these readouts
decreased significantly only at the highest difficulty level (p < 0.05;
Fig. 10). The second ANOVA showed that readouts of certainty of being
incorrect also decreased with increased trial difficulty (F4,64= 4.529,
p < 0.01). The post hoc test revealed that these readouts decreased
significantly at the difficulty levels 4 and 5 (p < 0.05, Fig. 10). These
results show that subjects read out both certainty directions better
when trials were easier. Considering that the probability of being in-
correct increases in harder trials – and, therefore, in the opposite di-
rection of certainty of being incorrect readouts – these results also
suggest dissociation between the assessment of the DMTS difficulty and
the trial-specific metacognitive assessment of the performance in the
DMTS decision.

3.8. Subjects with higher metacognitive ability earned more money in PDW,
especially if they read out certainty of being incorrect

Finally, we used two linear regressions to understand how subjects’
PDW earnings were determined by their metacognitive abilities. The
first linear regression showed that subjects’ earnings can be explained
by their general metacognitive ability quantified by slope-based mea-
surements (β=0.817, t15= 3.686, p < 0.005). A second multiple
linear regression separated the two components of the slope-based
metacognitive ability and showed that, although the ability to read out
certainty of being correct partially explained subjects’ earnings
(β=0.622, t14= 2.646, p < 0.05), their readouts of certainty of being
incorrect influenced more how much they earned during PDW
(β=1.060, t14= 4.201, p < 0.001).
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4. Discussion

4.1. Bi-directional certainty readouts

In the present study we were able to measure trial-specific readouts
of certainty of being correct and certainty of being incorrect by asking
subjects to bet money (post-decision wagering, PDW) on their percep-
tual decisions (delayed match-to-sample task, DMTS). We quantified
both certainty directions with the help of pre-decision wagering
(PreDW) task, in which subjects could wager according to the average
expected difficulty of the upcoming perceptual decision and their in-
ternal biases. The comparison between PDW and PreDW was utilized to
isolate the trial-specific influences on the certainty readouts. On
average, subjects were able to read out certainty of being correct and
certainty of being incorrect, and to use this metacognitive information
to bet money more efficiently.

These results also provided the first demonstration that the inter-
pretation of implicit certainty scales should take into account certainty
bi-directionality, since subjects utilized PDW to report bi-directional
certainty readouts without explicit instructions to do so. PDW has been
criticized for being highly influenced by individual biases associated
with gains and losses (e.g. loss aversion and predisposition towards
risky behaviors; Fleming & Dolan, 2010), but using a PreDW baseline
allowed us to account for such biases and, consequently, overcome one

of the main disadvantages of using wagering to access confidence.
In addition, we established a relationship between two directions of

certainty readouts and subjects’ metacognitive efficiency (meta-d′/d′).
Subjects with high metacognitive efficiency (i.e. those who performed
better on metacognitive decisions compared to perceptual decisions,
meta-d′ > d′) and low metacognitive efficiency (meta-d′ < d′) had on
average the same performance on perceptual decisions, but only the
high metacognitive efficiency group was able to read out both certainty
of being correct and certainty of being incorrect, while the group of
subjects with low metacognitive efficiency was able to read out only
certainty of being correct. We argue in the next section that this group
difference might be associated with additional information used during
metacognitive decisions, which were not available at the moment
subjects performed the perceptual decision. Nevertheless, considering
that certainty of being incorrect influenced most how much subjects
earned during PDW, these results suggest the adaptive value of readouts
of certainty of being incorrect for the planning of post-decisional ac-
tions in situations in which immediate feedback is not available.

The certainty bi-directionality was further supported by the in-
verted U-shape function of the reaction times during metacognitive
Type 2 decisions (RT2). In previous studies that used multiple-grade
scales, Type 2 reaction times might not have been directly associated
with certainty because the starting position of the cursor used for
confidence reports was intentionally varied across trials to discourage
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advance motor preparation (e.g. Fleming et al., 2012; Lebreton,
Abitbol, Daunizeau, & Pessiglione, 2015). Consequently, reaction times
might have also depended on the starting position that could be closer
or farther from the intended option, causing varying motor urgency not
related to certainty. Conversely, in our task design, RT2s were based on
initial binary decisions between two options randomly placed on each
side of the screen (‘wager high or low’), and associated with specific
wagers only at the second response step. This novel feature with two-
step metacognitive decision reports allowed measuring RT2 association
to certainty. Since faster reaction times are associated with increased
certainty (Kiani et al., 2014), the inverted U-shape function of wager-
specific RT2 suggests increased certainty in both directions of the wager
scale.

4.2. Sources of additional information for readouts of certainty of being
incorrect

The results of the slope-based approach demonstrated that subjects
with high metacognitive efficiency were able to read out certainty of
being incorrect (PDW slope-incorrect smaller than PreDW slope-in-
correct). More than that, we interpret the fact that these subjects as-
signed the lowest wager more frequently to incorrect perceptual deci-
sions than to the correct ones (cf. Fig. 7) as a clear demonstration of
their ability to recognize that they chose the wrong option in the DMTS

task and use this information to avoid high losses. We speculate that
such identification of incorrect choices might be associated with addi-
tional sources of information, resulting in improvement of the meta-
cognitive performance in comparison to the preceding perceptual per-
formance (meta-d′ > d′).

When Maniscalco and Lau (2012) developed the calculation of
meta-d′ at the same scale as d′, they initially assumed that the Type 2
sensitivity (meta-d′) should not exceed the Type 1 sensitivity (d′) be-
cause subjects use the same evidence in both types of decision. This
assumption has been contested by more recent studies that show con-
tinuing post-decisional evidence accumulation when Type 2 decisions
follow Type 1 decisions in time (Murphy, Robertson, Harty, &
O’Connell, 2015; Moran, Teodorescu, & Usher, 2015; Yu et al., 2015,
see also Fleming & Daw, 2017, for review). Along these lines, it can be
argued that trial-specific readouts of certainty of being incorrect rely on
additional information that was not available at the moment subjects
committed to the Type 1 decision, and that led to a reversal of the
evidence accumulation direction towards the non-selected option
(Yeung & Summerfield, 2012). Hence, metacognitive efficiency can be
viewed not only as a measure of deleterious evidence leakage when
meta-d′ < d′, but also as a measure of extra evidence accumulation
after Type 1 decisions, when meta-d′ > d′.

Another non-mutually exclusive possibility is that certainty of being
incorrect is a result of parallel metacognitive processing that runs
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concurrently with the formation of Type 1 decisions and thus, is not
necessarily predicated upon the post-decisional evidence accumulation.
In this case, the dissociation between Type 1 performance and meta-
cognitive readouts would be due to at least partially non-overlapping
access to information available for the Type 1 and Type 2 decisions
(Fleming & Daw, 2017). This view is supported by the presence of EEG
“error-related negativity” before Type 1 responses (Gehring, Goss,
Coles, Meyer, & Donchin, 1993), and the simultaneous presence of
decodable information about the required response and the actual
(incorrect) response that subjects are preparing (Charles, King, &
Dehaene, 2014). Nevertheless, also in this account, certainty of being
incorrect should be tightly linked to metacognitive sensitivity that ex-
ceeds Type 1 perceptual sensitivity (Fleming & Daw, 2017), which is in
line with our results.

4.3. Evidence accumulation, trial difficulty and certainty scales

Here we bring together our results about certainty bi-directionality
and trial difficulty, and the knowledge provided by previous work on
confidence rating and published models of evidence accumulation (e.g.
Pleskac & Busemeyer, 2010; Yeung & Summerfield, 2012; Yu et al.,
2015). Note that while we only argue here within the post-decisional
accumulation framework, some of the reasoning is also applicable to a
parallel metacognitive processing that is dissociated from the percep-
tual evidence accumulation.

Fig. 11 illustrates one hard (A) and two easy (B, C) incorrect trials of
the DMTS task followed by six-grade certainty scale rating. The “evi-
dence axis” exemplifies a theoretical range of evidence available for the
task. On hard trials, the evidence is distributed narrowly around the
Type 1 criterion. The easier the trial, the higher the probability that the
evidence is accumulated further from the Type 1 criterion, and closer to
the limits of the evidence axis. In a specific trial, if the post-decisional
evidence remains on the same side of the Type 1 criterion as during the
Type 1 decision, it is read out as certainty of being correct (blue curve).
If the evidence crosses the Type 1 criterion, it leads to different levels of
certainty of being incorrect (red curve). Hence, certainty increases to-
wards the two directions of the evidence axis, resulting in a bi-direc-
tional certainty scale as the exemplified U-shape function of certainty at
the bottom of the figure.

On hard trials (Fig. 11A), the difference between the perceptual
evidence supporting each option is small, and consequently is d′. In our
results, the Type 1 performance at the hardest difficulty level was at the
chance level. Moreover, subjects did not show any metacognitive ability
during Type 2 decisions in most difficult trials (Fig. 10). We therefore
suggest that the post-decisional evidence accumulation rate remained
as low as before the Type 1 decisions, and did not allow subjects to
improve their metacognitive efficiency. On easy trials (Fig. 11B and C),
the large difference between the perceptual evidence supporting each
option of the Type 1 decision allowed subjects to better distinguish the
match, yielding a high d′. Nevertheless, there were still some trials in
which subjects selected the wrong option, as illustrated here. Our group
comparisons indicate that subjects with low metacognitive efficiency
did not accumulate post-decisional evidence or failed reading it out
efficiently, since their meta-d′ was smaller than d′ (Fig. 11B). We sug-
gest that subjects with high metacognitive efficiency accumulated more
evidence after the Type 1 decisions (Fig. 11C). The post-decisional
evidence accumulation allowed subjects with high metacognitive effi-
ciency to improve the detection of correct choices (not shown in this
figure), but influenced even more the detection of the incorrect choices.

It is important to emphasize that the level of certainty each rating
(or wager) might represent critically depends on the difficulty level and
on individual ability to accumulate and/or read out evidence. On
harder trials, subjects predominantly use low wagers and, due to low
average certainty (i.e. high difficulty level), these wagers represent low
levels of trial certainty. On easier trials, subjects more often use high
wagers because of high average certainty (i.e. low difficulty level) but,

in this case, low wagers represented high or low levels of trial certainty
depending on subjects’ metacognitive efficiency. Subjects with high
metacognitive efficiency are able to accumulate inconsistent post-de-
cisional evidence at high rates. This evidence not only could cross the
Type 1 criterion, but also reach far to the other side (Fig. 11C). The
readouts of this evidence generate high certainty of being incorrect,
which is mainly reported through the lowest wager. Subjects who do
not accumulate inconsistent post-decisional evidence at high rates, on
the other hand, use low wagers to report certainty readouts about the
evidence that was close to the Type 1 criterion (i.e. low certainty level).
This reasoning emphasizes that the same response scale can be used to
represent different metacognitive readouts. Furthermore, the depen-
dence of certainty representations on the difficulty and individual
biases highlights the importance of the baseline measures for distin-
guishing between trial-specific and average certainty readouts.

Previous studies often interpreted low confidence reports as low
certainty of being correct (Fleming & Lau, 2014; Heereman et al., 2015;
Maniscalco & Lau, 2012; Sandberg, Timmermans, Overgaard, &
Cleeremans, 2010). In such cases, low certainty readouts are expected
to increase on harder trials together with the use of low ratings.
However in the present study, certainty of being incorrect increased on
easier trials (Fig. 10), further indicating that on these trials, subjects
were using low wagers when they were more certain about their (in-
correct) decisions, and not when they were more uncertain.

It is likely however that the readouts of certainty of being incorrect,
or error monitoring, arise naturally in different experimental contexts,
even when not specifically prompted by metacognitive report scale
formulations (Yeung & Summerfield, 2012). In case of a unidirectional
scale, e.g. confidence low to high, some subjects might use the middle
of the scale to signal low certainty of being either correct or incorrect,
and allocate low ratings for the certainty of being incorrect. Yet others
might use the low ratings to designate low certainty, thus conflating
these two different readouts. This issue underscores the importance of
scale interpretation in addition to the formulation.

5. Conclusions

Comparing post-decisional judgments to a pre-decision wagering
baseline allowed us to isolate individual psychological biases and ex-
pectations about task difficulty from trial-specific readouts, and to se-
parately quantify contributions of certainty of being correct and cer-
tainty of being incorrect to metacognitive ability. Our findings
demonstrate that when afforded an opportunity, humans are able to
monitor and report their implicit post-decisional confidence by reading
out certainty about correct and incorrect decisions. Together, readouts
of a confidence in having done a correct decision, and of a certainty in
the opposite direction (about having committed an error), shape me-
tacognitive evaluations in a bi-directional manner. The error mon-
itoring in particular drives high metacognitive efficiency. These results
contribute to the ongoing discourse on the complex relationship be-
tween post-decisional processing, confidence, and error monitoring.
Additionally, our experimental design provides a future perspective for
studying bi-directional certainty readouts not only in humans but also
in other animals, as well as in patients with moderate language com-
prehension impairments.

6. Supplementary references
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